

Electrochemical Analysis of Actinides in Molten Salts

M.M. Tylka, J.L. Willit, and M.A. Williamson Chemical Sciences and Engineering Division Argonne National Laboratory

October 20, 2014

Outline

- Significance of quantitative measurements of actinides in molten salts
- Overview of advantages and requirements of using electrochemical techniques
- Determination of required parameters
- Using electrochemical techniques for making quantitative measurements at higher actinide concentrations
 - Experimental challenges
 - Required corrections of the method
- Advantages of using AC Voltammetry
- Challenges of multicomponent systems
 - Development of new analysis method
 - Comparison of electroanalytical results with ICP-AES analysis
- Conclusions

Quantitative Analysis of Actinides in Molten Salts

Real time measurements of actinide concentrations in electrochemical recycle process are necessary for operating a commercial fuel treatment facility

- Safeguards
- Material control and accountancy
- Process control

Electrochemical techniques are wellsuited for in-situ process monitoring

- ☐ Allow rapid, real-time measurements
- Equipment not affected by high radiation background
- Compatible with remote handling operations
- Do not require use of standards
- No sample losses during analysis

Proportionality between current response and concentration of the electro-active species constitutes the basis of electrochemical analysis

Requirements for Quantitative Electroanalytical Measurements

Accurate i_p measurements

- ☐ Reproducibility
- Pre-treatment protocol to ensure reproducible electrode/electrolyte interface before each measurement
- Stability
- Non-interfering counter-reaction
- Stable reference electrode

Direct proportionality between measured peak current i_p and concentration C_0

Berzins-Delahay Equation

- insoluble product

$$i_p = 3.54 A C_0 \sqrt{F^3 n^3 D v / RT}$$

Variable parameters :

- ■Number of electrons transferred
- **□**Temperature
- ☐ Area of the electrode
- ■Scan rate
- □ Diffusion coefficient

For C_0 measurements all variables must be well-known and/or controllable

Defining Parameters

Area of the electrode – standard addition approach

$$\frac{di_p}{dh} = 7.08rC_0\sqrt{F^3n^3Dv/RT}$$

- ☐ Diffusion coefficient
 - Assumed to be constant (1.5x10⁻ o⁵cm²/s at 500degC)

- ☐ Scan rate dependence
 - Linearity of i_p with \sqrt{v}
 - Controls the limits of the reaction reversibility

Results obtained for a SINGLE component, relatively LOW concentration salt (<1.7wt%)

Composition #	Species	ICP-AES	Voltammetry	% Error
1	U ³⁺	0.46±0.05	0.452±0.003	0.65
2	U ³⁺		0.907±0.009	0.94
3	U ³⁺	1.73±0.17	1.767±0.003	1.5
4	Pu ³⁺	1.33±0.13	1.336±0.001	0.97

Very good agreement between electrochemical and analytical $oldsymbol{\mathcal{C}}_0$ measurements

Salts with Higher Actinide Concentrations

- Reproducibility is more challenging to achieve at high concentrations
 - Higher background currents and more significant area increase
 - Longer and more extensive cleaning protocol required
- Presence of unusual not peak-shaped voltammograms
 - No depletion effect at high concentrations
 - Mass transfer is not RDS (rate determining step)
 - Inconsistent with assumptions of Delahay equation

ightharpoonup Linear and reproducible plots of of i_p with A and $v^{0.5}$ achieved by applying proper cleaning preprotocol and adjusting controllable parameters

Methods to ensure mass transport limitations:

Deviations from Linearity at Higher Actinide Concentrations

Value of diffusion coefficient

- ☐ Can not be adjusted and/or controlled.
- ☐ Is a function of temperature
- Does it change with concentration?

$$\frac{di_p}{d(hrv^{0.5})} = 7.08rC_0\sqrt{F^3n^3D/RT}$$

 \triangleright Should generate linear plot if $D(C_o) = D$

Deviation from linearity for U concentrations higher than ~2wt%

Diffusion coefficient can be assumed constant only over a small change in the concentration

- D decreases with increasing concentration of the diffusing species
- Can also change with other variations of the salt composition e.g. concentrations of fission products in the molten salt

U wt%	D (cm²/s)
0.45	1.51E-05
0.9	1.52E-05
1.73	1.57E-05
3.55	9.40E-06
4.62	1.07E-05
6.837	7.67E-06
9.149	6.70E-06

Ability to measure/determine D INDEPENDENTLY of C_o is a crucial requirement for making real-time concentration measurements

AC Voltammetry for Diffusion Coefficient Measurements

Inputs:

• Mean dc potential (E_{dc}) is applied linearly on a long time scale compared to that of the superimposed ac variations (E_{ac})

- Plot of the magnitude of ac component of the current vs. E_{dc}
- Phase angle (φ) between the alternating current and E_{ac}

$$\varphi = \varphi(D, \omega, k_o, \alpha)$$

➤ Its value **DOES NOT** depend on concentration!!

This technique is currently being investigated:

- Theoretical derivations
- Experimentation

Any change in diffusion coefficient caused by change in concentration, and/or any other change in salt composition would be directly recorded and measured with the change in the phase angle

Additional advantages:

- φ is also area independent
 - Very beneficial especially for a system involving an insoluble product
- Direct method to obtain kinetic parameters

Obtaining a Baseline for Multicomponent System

- Accurate peak height (i_p) measurements require a reliable baseline from which to measure the peak heights
- Determination of the baseline for the U³⁺/U⁰
 peak is straightforward and reliable because
 it is the first peak in the series
- The baseline for the Pu³⁺/Pu⁰ reduction peak is affected by the tail from the U³⁺/U⁰ peak.

Compositions # 1-4: the same Pu³⁺ concentration, different amounts of U³⁺

→ Pu slope should remain constant

Pu slope changes significantly with increasing U concentration

	Actual U	Actual Pu	Electroanalytical
Composition	wt%	wt%	(CV) Pu wt%
1	0.45	1.42	1.27
2	1.00	1.31	1.63
3	1.99	1.28	2.16
4	4.35	1.24	3.08

→ Need a method with better baseline resolution between peaks for concentration determination

Semi-differential Analysis Method

- Different method of analyzing CV data
- Generated by semi-differentiation of the current vs. time data

$$m(t) = \frac{d^{-0.5}}{dt^{-0.5}}i(t) e_p(t) = \frac{dm(t)}{dt}$$

- Increases the peak height/width ratio
- Provides a better baseline for the Pu³⁺/Pu⁰ peak
- Has the advantages of high sensitivity and high resolvability for the species
- Well-developed theory for soluble/soluble red-ox reactions
- Equations describing semi-differential peak for soluble/insoluble couples had to be derived

Derivation of the Equations for Implementation of Semi-differential Method

• Nernst Equation in terms of semi-integral of current m(t) and limiting value of m_c for solubleinsoluble couple

$$E = E_{1/2} + \frac{RT}{nF} ln \left\{ \frac{m_c - m(t)}{m_c/2} \right\}$$

• e_p obtained by differentiating $rac{dm}{dE}$

$$e_p = \frac{C_0 n^2 F^2 A D^{0.5}}{2RT}$$

$$\frac{de_p}{dh} = \frac{C_0 n^2 F^2 r \pi D^{0.5}}{RT}$$

 Derived equations have been verified using U data by comparing values calculated using CV (Delahay equation) and semi-differential method

Concentration of U³⁺

	U wt%		U wt% Semi-
Composition	Actual	U wt% CV	diferential
1	0.45±0.05	0.52±0.01	0.558±0.003
2	1.00	1.06±0.03	1.017±0.006
3	1.99	1.68±0.05	1.731±0.005

Remarkable Accuracy of U³⁺ and Pu³⁺ Measurements

Composition	Species	wt% ICP-AES*	wt% CV	wt% Semi-differential
1	U	0.45±0.05	0.52±0.01	0.558±0.003
1	Pu	1.42±0.14	1.27±0.03	1.37±0.01
2	U	1.00	1.06±0.03	1.017±0.006
2	Pu	1.31±0.13	1.63±0.03	1.46±0.01
3	U	1.99	1.68±0.05	1.731±0.005
3	Pu	1.22±0.12	2.15±0.04	1.264±0.008
4	Pu	1.44±0.14	3.08±0.02	1.445±0.007

Semi-differential concentration measurements of both U³⁺ and Pu³⁺ are in excellent agreement with the ICP-AES concentration measurements with extremely small relative error

Concluding Remarks

- Voltammetry is a tool for in situ process monitoring of electrochemical process operations
- Very good agreement between electrochemical concentration measurements and ICP-AES sample analysis for a single component, relatively low concentrated salts
- Voltammetry at higher concentrations:
 - Additional electrode pre-treatment procedures and adjustments necessary to obtain reproducible results
 - Diffusion coefficient changes with increasing concentrations
 - Deviations from linearity for U concentrations higher than 2wt%
- Application of AC Voltammetry for diffusion coefficient measurements
 - Can be used for independent diffusion coefficient measurements
 - Enables determination of kinetic parameters
- New method for analyzing CV data was developed to eliminate concerns with baseline identification
- Semi-differential concentration measurements of both U³⁺ and Pu³⁺ are in excellent agreement with the ICP-AES concentration measurements with extremely small relative error

Acknowledgements

- Government License Notice
 - The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
- This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, under Contract DE-AC02-06CH11357